FROM RELATIONAL DATABASE TO

VALUABLE EVENT LOGS
FOR PROCESS MINING PURPOSES: A PROCEDURE

Macke Jans | miekejans@uhasselt.be | Hasselt University, Belgium

Abstract
The art of structuring event data in such a way that it fully empowers process mining analysis, is currently only within reach af-
ter labor and time intensive trial and error. This paper reports on a procedure that can be followed to build such an event log for
process mining purposes and aims to accelerate this learning curve. It intends to create awareness of the decisions an event log
builder takes and its related consequences. The procedure consists out of seven steps and is written in the form of a manual for the
event log builder. The report is based on nine years of process mining experience in both academics and industry by the author.

yniversitel
»pNAasselt

KNOWLEDGE IN ACTION

1 Introduction

If a process is supported by a process-aware information system, extracting an event log that
complies with the format prerequisites for process mining can be trivial. However, information
systems are very often based on a relational database structure. In those cases, one can literally
speak of ‘building the event log’. These relational databases traditionally hold a huge amount of
data, on a broad spectrum of related documents and on different levels of granularity. Yet this
data still has to be converted into a minable event log in which events are related to a single
instance and on one level of granularity. In a first step, the architecture of the event log has to
be decided upon. In a second step, the event log is built by feeding the architectural frame with
data. This procedure focuses on the architecture-step, not on the operational build-step, nor on
the technological minable format in which the event log needs to be converted (preferable XES).

2 Objectives of the procedure

The procedure is a sequence of steps that could be followed during the architecture-step of
creating an event log for process mining, starting from a relational database. The design of the
procedure, together with a running example, seeks to meet following objectives: it will

1. be possible to be employed by process analysts with limited knowledge of process mining,
i.e. the analyst is familiar with the concept of process mining and the prerequisites of
an event log, but may not have any experience in conducting a process mining analysis

herself.

2. increase the analyst’s understanding of the decisions and their consequences, related to
the choice of process instance, activities and attributes.

3. provide the process analyst with a practical example or sufficient background information
in order to conduct the approach in a consistent manner.

3 Procedure

The architecture building phase starts with step 1, being preceded by a preparatory step 0. The
process analyst is the person that carries out the procedure. He should take the lead in this
approach, guiding the stakeholders through the steps. It is the process analyst’s responsibility
to safeguard the correct application of the approach and to guide the stakeholders through
the decisions to be taken. The process analyst has to provide the stakeholders with enough
information to take well-informed decisions, but has to be cautious not to overload them with
too many technicalities.

Step 0: State process and primary goal — stakeholder identification

As preparatory step, the analyst should state the process to be mined and the goal of the
analysis, according to the project sponsor. There are two categories of goals: efficiency and
compliance. In this step, it is important to decide what the main emphasis of the analysis will
be, the ‘must have’ output of the project. In reality, often both goals of efficiency and com-
pliance are combined. Still, there is a primary goal that we recognize as a ‘must have’, and a
secondary goal that can be seen as a ‘nice to have’. For example, an internal auditor might have
a primary goal of assuring compliance (the ‘must have’), but sees extra insights in efficiency as
a ‘nice to have’. A process owner, on the other hand, will probably aim for efficiency gains as a

‘must have’, taking the compliance assurance for ‘nice to have’.

Based on the preparatory step, the process analyst identifies the stakeholders and schedules
a meeting to go through the steps of the approach.

Running example. We will use a running example throughout the steps of the approach for
demonstration purposes. The running example is inspired by real life contexts and database
constructs. The example analysis comprises a traditional procure-to-pay process, analysed by
an internal auditor whose primary goal is compliance. Consequently, the stakeholders of this
project are the overall responsible of the procure-to-pay (P2P) process (the process owner), the
IS domain expert that is acquainted with the underlying P2P system (SAP), and the internal
auditor. A meeting is scheduled by the process analyst, inviting these three persons.

Step 1: Reconfirm primary goal and identify process cornerstones

According to this approach, the following stakeholders should be involved in the architecture
building phase: (a) the process owner of the process under investigation, and (b) the information
systems domain expert that is acquainted with the supporting information system of the process
at hand. Optionally, (c) a third party project sponsor (in case this is not the process owner or
the IS domain expert) can be involved in this phase.

To apply the approach, a meeting with the process analyst and the identified stakehold-
ers should be set up to go through all the steps, starting from step 1. This meeting should
be attended by all invitees at the same time (in contrast to splitting the meeting in several
‘sub-meetings’), in order to guarantee a cross-over of all those person’s expertise and a well-
functioning of the approach. An important aspect of this meeting is a general understanding of
the process and its underlying business.

At the start of the meeting, the goal, as understood by the process analyst, should be re-
confirmed by the stakeholders. To facilitate communication in later phases, three to five key
questions should be listed. The questions are example questions of what the stakeholders expect
to have the answer to, at the end of the process mining analysis. The formulation of these
questions forces all team members to turn to concrete process aspects and assures everyone
is on the same line when they speak about their goal. In addition, implicit project expecta-
tions are converted into explicit expectations. This assists the process analyst in managing
expectations towards realistic project outcomes, a key factor for project success. The questions
could be formulated according to the SMART format, where you aim to formulate your ques-
tions in such a way that they are Specific, Measurable, Attainable, Relevant, and Time-bounded.

After the goal confirmation, the first step requires an identification of the process corner-
stones. A process cornerstone is a key activity in the process according to different stakeholders.
In a business process, these activities are often tied to transactions that are executed on doc-
uments (for example signing an invoice), while in operational processes this is not so often the
case. The goal that was set, can influence the selection of process cornerstones in terms of scope
setting. This should be kept in mind.

The output of step 1 is

e an agreed-upon goal must-have of efficiency or compliance,

e a set of key example questions that the stakeholders aim to have an answer on at the end
of the process mining project, and

e a list of process cornerstones.

Running example. The meeting conversations could yield the following output:

o Goal: compliance
o Key questions:
— ‘Is there Segregation of Duty (SOD) between the Purchase Order (PO) creation and
the Goods Receipt?’
— ‘Is there SOD between the first and second level of approval?’

— ’Does an invoice always stem from a PO?’

— ’Is there a new approval, after someone alters the PO?’
e Process cornerstones:

— Create a Purchase Requisition (PR)
— Create a Purchase Order (PO)

— Approve PO

— Receive Goods

— Book Invoice

— Add PO line (This cornerstone comes forward as activity that could influence process
execution and is added to the list of cornerstones)

Step 2: From cornerstones to key tables

In contrast to the first step, the second step turns towards a more technical discussion. To this
end, it is important to provide the stakeholders at this point in time a clear vision on the end
goal of the meeting. It is suggested to keep the explanation as simple as possible, and therefore
the process analyst is recommended to only use two graphics to explain the concept of process
mining and the desired format and terminology of an event log (Figure 1 and Table 1 respec-
tively).

Figure 1 could be used to explain the basic concept of process mining, on the link between
real life transactions, data that is captured in the supporting information system, and how this
is used as input for process mining to produce as-is process models. Given the assumption
that the process analyst is acquainted with process mining, it goes beyond the scope of this
report to write out a literal explanation of how to introduce the stakeholders to process mining.
In case the process analyst finds the picture and brief explanation above shortcoming to exe-
cute this step with confidence, this should be seen as an indication that the process analyst’s
experience with process mining is too low to conduct the event log building phase independently.

To introduce the concept of an event log, along with its assumptions in most process mining
algorithms, Table 1 can be used. The table shows a simple example of an event log of a helpdesk

Q[

Supportive
IT system

\

Data Storage

Event logs

Real, live
transactions

t

Guidance

Designed
Process Model

T e S
" Real - .~

=1

Process Model

Figure 1: Process mining concept

Case ID Activity Timestamp Resource Role Priority Impact Finding Result
1 Create ticket January 2, 3:15 PM Sarah Client 2 Medium
1 Screen ticket January 2, 3:32 PM Li Junior analyst Simple
1 Repair - simple January 10, 9:45 AM Li Junior analyst Repaired
1 Close ticket January 10, 11:34 AM Steve Assistent
2 Create ticket January 2, 4:04 PM Philip Client 2 High
2 Screen ticket January 2, 4:05 PM Li Junior analyst Complex
2 Repair - complex January 3, 1:38 PM Marie Senior analyst Repaired
2 Close ticket January 4, 9:23 AM Steve Assistent
3

Table 1: Event log example

(possible IT, not necessarily) with two traces, a process that everyone in a business can interpret
without a specific background prerequisite. The event log should assist the process analyst in
introducing the event log as such, along with the concepts ‘case id’, ‘activity’, ‘timestamp’, and
‘attributes’. The difference between case and event attributes should be left out of the discussion
at this moment in time, only introducing concepts that are necessary at this point in time. The
same holds for the lifecycle transitions that are represented by an activity (for example ‘start’,
‘complete’, ‘assign’,).

After introducing the stakeholders to process mining and the concept of an event log, the
second step can be taken. In this step, the underlying tables of the cornerstones, listed in step
1, are identified. In business processes, activities —and hence cornerstones- typically refer to
actions that relate to documents. Think for instance at ‘signing of an order’ or ‘entering the
goods receipt in the system’. In such processes, it is suggested to take an intermediary step
from cornerstones to underlying documents. Once the underlying documents are made explicit,
the step can be finalized by identifying the tables that capture the timestamp of the action on
the document that was listed as a cornerstone. It could be that, depending on the individuals
in the meeting, different underlying documents are identified when multiple documents are re-
lated. This is not a problem, since they all lead to the same goal: identifying the timestamp of
the action that is listed as a process cornerstone. Making the underlying documents explicit is
merely a facilitating step.

It is of utmost importance that the process analyst verifies whether the selected timestamp
actually captures what is expressed in the cornerstone and nothing related though not similar
to it. Going from the identified cornerstones to specific fields in the database that capture
related timestamps, might force the architecture to discard or to reformulate previously listed
cornerstones. For example ‘Receiving goods’ might be transferred into ‘Enter Goods Receipt in
system’ because there is no data field that captures the timestamp of actually receiving the goods.

The output of this step is a list of tables that capture timestamps that are related to the
cornerstones of step 1.

Running example. The meeting conversations could yield the following output:

Cornerstone Document Table

Create a Purchase Requisition (PR) PR PR header

Create a Purchase Order (PO) PO PO header
Approve PO PO Change log header
Receive Goods ! Enter GR PO PO history

Book invoice Invoice Invoice header
Add PO line PO Change log line

The list of cornerstones, the output of step 1, is the input for step 2. The related documents
are the documents that the stakeholders associate with the transactions that are mentioned in the
cornerstones. This might differ from group to group. For instance, this group identified the PO
as the related document for a goods receipt, where the IS domain expert narrowed this down to
a specific table that captures the timestamp of entering a Goods Receipt in the system. Another
group however, might have chosen for the Goods Receipt document itself as underlying document.
As mentioned above, this is no problem, since both documents will lead to a timestamp of the
cornerstone.

Going from the listed cornerstones to the specific database at hand, forced the architecture to
adapt the cornerstone ‘Receive Goods’ to ‘Enter GR’. The remaining cornerstones are all backed
with a logged timestamp in the database and remain unchanged.

The list of tables holds tables like ‘Invoice header’ or ‘Change log line’. This kind of tables
refer to a parent-child relationship between tables. In these relationships the parent table captures
general information of a document, traditionally relating to the header of a document. The child
table captures information that differs from line to line on the body of the document. This kind
of set-up is very common at ERP-system databases.

Step 3: Identify relationships between key tables

In step 3, again the output of the previous step is taken as input for the current step. Starting
from the listed tables in step 2, an entity-relationship diagram' is drawn, depicting all underly-
ing relationships of the tables that were mentioned this far. The process analyst might opt for
a short explanation of this step by using Figure 2, showing shortly the concepts of an entity-
relationship diagram and its notation.

The analyst might also opt for a more natural explanation on relationships between tables,
without talking about for example cardinality symbols, by asking questions. The questions
should be formulated like ‘Is there for every ... (document B) a ...(document A), or could it

LOr another language can be used, like for example UML.

Purchase Purchase
Requisition Order

A purchase requisition might not result in a purchase order (), orin 1
or more (<) purchase orders.

On the other hand, a purchase order can maximum refer to 1 (|)
purchase requisition, or to no requisition at all ().

Figure 2: Entity-Relationship diagram concept

also exist without a preceding document?’ and ‘Could it also be that more than 1 ... (document
A)’s result in the same ... (document B)?’ etc.

The output of this step will be an entity-relationship diagram that holds, at minimum, the
tables that were listed in step 2. By expansion, this diagram will comprise additional tables to
make the links between the listed tables so far. The most important part of this step is going
through the exercise of discussing the structure of the database and reach a full understanding
of how the tables, that hold the document information, are related. The concept of parent-
child relationships, as mentioned in the running example in the previous step, is important to
pay attention to. This is crucial to understand when selecting the process instance in step 4.
Also, the presence of many-to-many relationships should be identified and well-understood by
all stakeholders.

Running example. The meeting conversations could yield the output as depicted in Figure 3:

Purchase Requisition

PR-ID
¢
O)
Change Log Purchase Order Invoice
Change-I1D PO-ID Invoice-ID
€4 4 i
Change Log Details Purchase Order Line Invoice Line
Change-I1D PO-ID Invoice-ID
Change_Line-ID PO_Line-1D Invoice_Line-ID
Purchase Order
History
PO-ID

Figure 3: Running example entity-relationship diagram

The tables that were listed in the previous step are taken as a start. Two additional tables are
depicted. These tables are the link between the table ‘PO header’ and ‘PO invoice’. The example
shows three documents that are represented by tables in a parent-child relationship: the PO, the
iwvoice, and the change log. Further, there is a many-to-many relationship between the PO’s
and the invoices. This means that one single PO can result in multiple invoices, but likewise,
one single invoice can refer to multiple PO’s.

Step 4: Select process instance

This step, selecting the process instance, is the most crucial step of the approach, since the
interpretation of the following analysis is directly influenced by it. The process instance is the
unique piece, document or case —depending on the type of process- that is followed throughout
the process. As already mentioned, in business processes, activities are often related to docu-
ments and process instances naturally reflect one of those documents. In this light, there are
possibly two dimensions related to the decision of process instance selection. Firstly, one has
to decide which document to select as process instance: a document that triggers the process,
or a document that is created in the last phase of the process? In case the selected document
is stored in database tables with a parent-child relationship, a second dimension of the process
instance selection imposes itself: which level of granularity of the selected document is chosen?
Decisions on these two dimensions should be taken.

Step 4.1: Document selection of process instance

As a start, the documents that carry the transactions of the process need to be identified and
listed as candidate process instances. This is in general a simple deduction from the base,
designed process model.

Running example. In our example, the candidate documents would be a PO, a Goods Receipt
document, and an invoice. If a PO is selected, then all events related to a single PO will comprise
a process instance’s trace. This may include several goods receipt entries and several invoices.
If an invoice is selected, all events that eventually lead to one invoice will be considered part of
that process instance’s trace. This may include several POs or only a part of a single PO.

To select one document out of these candidates, two aspects have to be considered: the goal
of the process analysis, and the cardinality of the relations between the candidate documents.
Both aspects will be discussed in the two next subsections.

Document selection and goal of process analysis If all process executions start with the
same document, because there is technically no other start possible, the start document should
be selected as process instance document. However, if a process execution has multiple points
of entry, the goal of the analysis (see step 1) influences the document selection.

As explained before, we distinguish two types of business goals of the analysis: efficiency and
compliance. If the primary goal is efficiency, it is recommended to select the start document as
process instance document. By selecting the start document as process instance, fall-out will
be identified. For example, POs or leads that do not result in a final invoice or sale will be
identified. Unlike cases that do not result in an end document, cases that do not start with the
prescribed start document will however not be identified when the start document is used as
process instance. For this reason, selecting the start document in case of a formulated compli-
ance goal is not desirable.

If the goal is compliance, the end document could be selected in case of a one-to-one rela-
tionship between the start and end document. Starting from the selected end documents, the
preceding documents can be related to the process instance via back-tracing. That way, all dif-
ferent entry points will be taken into account and a process instance’s trail will be reconstructed,
as long as it is related to an end document. An invoice that is booked as end document, but
which is not preceded by a PO for example, will be shown. That is why this approach is sug-
gested for a compliance goal. The downside is that process executions that did not reach the
end document yet, are falling out of scope. Applying these guidelines implies a trade-off between
identifying fall-out and identifying non-compliance.

Selecting the end document as process instance when the goal is compliance, is not always the
best solution. In case there is a many-to-one relationship between the start document and the
end document (i.e. multiple start documents could result in one end document), an alternative
solution should be employed. This solution, that also counters the trade-off between fall-out and
non-compliance, is to use a dynamic process instance. A dynamic process instance is a process
instance that, depending on the individual case, may have a different underlying document as
process instance. For example: if a PO is present, the process instance is that PO, else it is
the invoice. In case of such a dynamic process instance, both fall-out and non-compliance, or
combinations will be detected. This dynamic process instance uses the first document that is
present for an individual case, as process instance. That way, the many-to-one relationship will
be reduced to multiple one-to-one relationships. The disadvantage of this approach, however,
is a more difficult interpretation of the analysis results in the next phase. ‘A case’ can refer
once to a PO, and in another case to an invoice. This will make communication and analysis
more difficult. It is up to the process analyst to verify whether there is a real need for this
dynamic process instance. A key factor of success in the use of such a process instance, is a
clear understanding of this artificial set-up by the stakeholders.

Running example. In case of an efficiency-inspired project, the PO would suit best as process
instance. In case of a compliance-driven project, the invoice might be a better candidate. Partic-
ularly since the invoice is the direct link to financial reporting, mostly the subject that needs to be
provided assurance on in compliance-driven projects. In case a dynamic process instance is used,
a ’purchase’, the case, will be represented by a PO in case a PO is present, or by an invoice,
when no PO is present. Given that a goods receipt document can only exist after creating a PO,
only the PO and the invoice will be valid representations of the dynamic instance.

Document selection and cardinality between candidate documents In case the candi-
date documents show cardinalities that are different than one-to-one, the process analyst should
be aware of the consequences of choosing one document over the other document. Having many-
to-many relationships can be disentangled to one-to-many and many-to-one relationships. Both
the many documents-to-one instance relationship and the many instances-to-one document re-
lationship hold their own consequence.

In case of a relationship where multiple documents can be related to a single process instance,
the event log will link a repetition of transactions on these other documents to a single instance.
The resulting traces will contain repetitions or self-loops of these activities, representing the
many-to-one relationship correctly. In case of a relationship where multiple process instances
can be related to a single other document, however, the event log will artificially duplicate the
transaction(s) on that other document (under the assumption that these activities are included
in the event log). This would result in a misrepresentation of reality. In case of a many-to-
many relationship between two documents, one has to decide for which document an artificial

Case ID Activity Document Nr.

1 Create PO PO 1
1 Book Invoice Inv 100
PO Invoice ' '
1 Book Invoice Inv 101
°1 » °100
2 Create PO PO 2
°2 °101
3 Create PO PO 3
°3 > °102 e
o4 _) 0103 3 Book Invoice Inv 100
\D 0105 3 Book Invoice Inv 102
5
3 Book Invoice Inv 103
4 Create PO PO 4
4 Book Invoice Inv 105
Figure 4: Many-to-many example Table 2: Event log with PO selected as pro-

cess instance

duplication of the related transactions is least harmful or more in line with the goal of analysis.
Specifically, if the analysis also relates to the load of resources, duplication of events is not
appropriate and might present a biased picture. Notice that, although the decision relates to
the selection of a document, the consequences are on the level of the related transactions that
take place on the involved documents.

Running example. Figure 4 shows an example combination of POs and invoices, like they
could appear in our running example, based on the Entity-Relationship diagram of Fig.3. There
is a many-to-many relationship between PO and invoice in this example. In case a PO is
selected as the process instance, this will lead to the events, listed in the event log in Table 2
(making abstraction of all other activities). The two consequences, explained before, can be seen
as follows:

o The traces of case 1 and 3 reveal a self-loop on the activity 'Book Invoice’. This is a
result of the ‘one-to-many’ relationship between the document that represents the process
instance, the PO, and the related document, the Invoice. Notice that in case multiple
events would be related to the invoice, for example also 'Pay invoice’, these will all result
in multiple events in a single trace. As such, the event log will uncover the repetition
of the same activity(-ies) 'Book invoice’ and/or 'Pay invoice’ on a single PO, adequately
representing reality at the level of the process instance.

o The activity of booking invoice nr. 100 is mentioned twice in the event log, although this
activity only took place once. This is a result of the 'many-to-one’ relationship between
the document that represents the process instance and the related document. Two process
instances, PO 1 and PO 3, refer to the same invoice. Since the PO is the process instance,
followed throughout the lifecycle, the event of booking the invoice is artificially multiplied.
This poses a discrepancy between reality -invoice 100 is only booked once- and the number
of times an activity is included in the event log (twice). This effect does not have to
pose a great problem, it only should be taken into consideration when analyzing results. It
is mostly important for avoiding an interpretation of the summary statistics on activity
frequency.

1If, in this example, the invoice would have been selected as process instance, similar consequences
would hold, only starting from a different point of view. A self-loop on the activity ‘Create PO’
would show up, uncovering the creation of multiple POs, preceding the booking of a single invoice.
Further, the activity ‘Create PO’ would be artificially multiplied, because of the many-to-one
relationship between PO and invoice.

To take many-to-many relationships and its consequences into account in the event log
architecture, it is important to turn to the key questions and the goal of the project. What

exactly do you wish to get an answer to? For example, a financial auditor is primarily interested
in whether invoices were preceded by an approved PO. Therefore, selecting the invoice as the
process instance, avoiding a possible artificial multiplication of financial documents, is highly
recommended.

Step 4.2: Granularity level selection: parent or child

In case the document, as selected in step 4.1, is represented by a parent-child relationship in the
database (see step 3), one has to decide which level of the document should serve as a process
instance. Will the document as a whole be followed throughout the process, or will it be divided
in sub-parts to follow separately throughout the process?

Firstly, this decision is based on the formulated key questions. If the key questions refer to
documents as a whole, or to information that is stored on a header level of a document (like cus-
tomer involved, region,. ..), less granularity should be chosen. If the key questions on the other
hand refer to information that is typically of finer granularity (f.e. the amount of an invoice,
which is typically information that is stored on a line, not in the header), then the finer-grained
level of information should be considered.

To take the ultimate decision, two scenarios and their event log consequences should be
clear. These are the mix of header level process instances with activities on a more granular
level, and the mix of lower level process instances with activities on header level. These scenarios
are discussed in the following paragraphs, followed by the final decision at hand: which level of
granularity should be selected?

The mix of process instances at parent level with activities on child level Often,
a mix of granularity among the activities is present: some activities refer to transactions that
relate to complete documents, while other activities refer to transactions on sub-parts of docu-
ments. Differently stated: some activities are transactions on the level of the parent, others are
on the level of the child. A goods receipt, for example, typically refers only to a line of a PO that
has been received (child-level), while an approval is mostly provided on a complete document
(parent-level). If a process instance is selected on the parent-level, it is important to decide on
the aggregation function of activities that relate to activities at the child level, a finer-grained
level of information. For example, if a PO is selected as process instance to follow throughout
the procurement process, activities that refer to a PO as a whole do not pose a problem. In a
process execution as designed, one process instance will relate to exactly one activity of creating
this PO and one activity (or two if desired) on approving this PO. The activities that relate to
subsets of this process instance on the other hand require more attention. If a goods receipt for
example is entered for each line of a PO, and a PO can have an unlimited number of lines, does
the event log needs to include the goods receipt of all individual lines? This will yield traces
like ‘Create PO — Approve PO — Goods Receipt — Goods Receipt - ... - Goods Receipt - ...,
resulting in self-loops on the activity at the lower granularity level. This will provide the analyst
with information like ‘there are a lot of goods receipt activities on one PO’. However, it will not
capture whether there are inefficiencies on line level for example. There will be no insights in
whether this self-loop is ascribed to a single goods receipt for each line or to partial deliveries on
one line. This is due to the level of the chosen process instance, which dictates on which level
information is gained.

10

Granularity of A
activity

P P
activity activity

(¢
Item 1 e
! (0]
Ttem 2 activity

Ttem 3

Header

C

activity

) (&
Item 4 activity

~ C
Item 5 activity

v

Time

Figure 5: Header and line level activities example 1

Take for example Figure 5, a graphical representation of what could happen in reality. In
reality, one activity at header level (P activity), five similar activities on five children (C activi-
ties), and again one activity at header level have been executed. If one would select the process
instance at header level (in our example a PO as process instance), this would result in one trace
with a sequence of <P, C, C, C, C, C, P>. There is no insight on whether this trace represents
the situation like depicted in Figure 5 or a situation like depicted in Figure 6.

Granularity of A
activity
P P
Header activity activity
Ttem 1 (¢] (¢ (¢] (¢ (6]
’ activity activity activity activity activity
»
»
Time

Figure 6: Header and line level activities example 2

In essence, this is a similar situation to the one-to-many situation that was described in the
step of document selection. As a result, an important decision in this situation is whether all
these finer granularity level activities should be part of the event log, or would an aggregation
suffice too.

The mix of process instances at child level with activities on parent level The
opposite of the previous situation also has its own characteristics. What are the consequences
of choosing a process instance at a lower level of granularity? Take the same example of a PO
with the activities ‘Create PO’ and ‘Approve PO’ on the highest level of granularity, and ‘Goods
Receipt’ on a lower level. In case the lower level, a PO line, is taken as a process instance, all
higher level activities have to be multiplied. This is again the same principle as with the one-to-
many table relationships. A PO with for example ten lines, representing ten process instances,
could yield ten identical traces of ‘Create PO — Approve PO — Goods Receipt’. At first sight,
30 activities seem to be registered (ten traces of three activities). However, only 12 activities
are registered: one ‘Create PO’, one ‘Approve PO’, and ten times ‘Goods Receipt’. Exactly like
the previously described parent-child relationships, the activities that relate to the higher level

11

of granularity are multiplied and should be dealt with cautiously when analyzing the results.
Returning to the example, depicted in Figure 5, choosing a process instance at the lower level of
granularity, would yield an event log of five identical traces <P, C, P>, instead of one trace with
a repetition on I. The example in Figure 6 on the other hand, would result in a different event
log. The log would only contain one trace <P, C, C, C, C, C, P>, revealing unambiguously the
repetition of the same activity on one single item.

Level of granularity decision Turning back to the essence of step 4.2, a decision on the
level of granularity of the process instance needs to be taken. To take this decision in a founded
matter, the key questions, as formulated in step 1, should be taken as input. From each ques-
tion, the related documents (that capture the activities of relevance to the question) and the
associated level of granularity should be listed. Based on this list, a decision on granularity
level needs to be taken. As a general rule, a parent level is recommended. In case the key
questions refer to activities at child-level, there needs to be assurance that answers can still be
formulated when using aggregations of activities at child-level. A clear aggregation function
should be stated for all activities that relate to a finer granularity than the selected process
instance: are all those activities captured in the event log, only the first one, the first one after
each interrupting activity, or an alternative condition?

For these discussions, a true understanding of the concepts above is crucial, and the process
analyst could use Figure Figure 5 to introduce the stakeholders to these aspects. Instead of
using ‘P activity’ and ‘C activity’, a parent and child activity of the process at hand should be
chosen to make it more concrete.

Exceptional situation: child level activity triggers parent level activity One partic-
ular situation requires special attention: when an activity at a finer level of granularity triggers
an activity of a higher level. If this construct is present, and the assurance of this construct
is part of the analysis, the finer level of granularity, the child, needs to be selected as process
instance. Notwithstanding this rule, this selection results in undesired traces.

Take a look at the example in the context of our procurement process in Table 3. The
activity ‘Add line’ is an activity at a finer level of granularity. If this activity takes place, it
triggers the activity ‘Approve PO’, an activity at parent level. In the example, a PO is origi-
nally created with four lines. After approval, the goods receipts of all separate lines take place.
In parallel, a fifth line is added. This activity triggers a new approval of the PO. While the
invoices are received for the first four lines, the goods receipt of the 5th line takes place in parallel.

If the event log would follow a PO at the parent level and include all activities at a lower
level —i.e. using no aggregation function—, the trace of this specific PO would look like follows:
<Create PO, Approve PO, Goods Receipt, Goods Receipt, Add line, Goods Receipt, Goods
Receipt, Approve PO, Receive Invoice, Receive invoice, Receive invoice, Goods Receipt, Receive
Invoice, Receive invoice>. If one would analyze this trace, questions like ‘Why is there a goods
receipt before the PO is approved?’ raise. In reality, the interventions of the activity ‘Add
line’ and ‘Goods Receipt’, relating to line 5, are in parallel with the flow of the first 4 lines. By
following a process instance at parent level, one cannot uniquely link these parent level activities
to the child activity, but at least they all appear on one trace. It provides the possibility to use
this ’all-capturing’ trace and rely on assumptions about the triggering characteristic of certain
activities (like ’Add line’ here) to explain odd occurrences of the responding activity (like *Ap-
prove PQ’). Selecting the process instance at the finer level of granularity on the other hand,
splits the activities at child level to different traces and no connection can be made anymore

12

Activity at parent level Activity at child level
Create/Approve PO Goods Receipt Tnvoice Receipt Add line
Create PO (with 4 lines)
Approve PO
Goods Receipt of line 1
Goods Receipt of line 2
Add line 5
Goods Receipt of line 3
Goods Receipt of line 4
Approve PO
Receive Invoice of line 1
Receive Invoice of line 2
Receive Invoice of line 3
Good Receipt of line 5
Receive Invoice of line 4

Receive Invoice of line 5

Table 3: Example triggering activity

between the triggering activity in one trace and the response activity that is copied to all related
traces. Therefore, a process instance at parent level is preferred over a process instance at child
level, even if it does not provide full assurance either.

The final output of step 4 is an identification of the table and the field in the database that
captures the unique id of the selected process instance.

Running example. The decision on which document to select as a basis for a process instance,
1s linked to the goal of compliance in this example, since not all purchases are system technically
forced to start with the creation of a PR (hence no unique start activity). Following the guide-
lines of step 4.1 and taking the many-to-one relationship between the start document (the PR)
and the end document (the invoice) into account, a dynamic process instance is selected. This
boils down to a PR as process instance in case there is a PR, a PO as process instance in case
the process execution started with a PO, and an invoice as process instance if neither a PR, nor
a PO exists for a specific invoice.

Given that the PO and invoice-related data are captured in two times two tables in our
database, the level of granularity has to be decided upon too. There are two options: to follow a
PO /invoice as a whole throughout the process, or to follow separate lines. To guide this decision,
the key questions from step 1 are retaken:

o ‘Is there Segregation of Duty (SOD) between the Purchase Order (PO) creation and the
Goods Receipt?’

o ‘Is there SOD between the first and second level of approval?’
e ‘Does an invoice always stem from a PO?’

o ‘Is there a mew approval, after someone alters the PO?’

13

The underlying activities with their involved documents, including their granularity level of
the activity that is mentioned, are:

Create PO and Receive goods — PO header — PO line
Approve PO — PO header
Create invoice and create PO — Inwvoice header and PO header

Approve PO and Add PO line — PO header — PO line

Creating an invoice that is stemming from a PO is listed on header level of granularity, since
creating both an invoice and a PO are activities on header level. However, we know from the
relational database, that the link between these two documents is created on a lower level, with
a many-to-many relationship. Following the gemeral principle of taking the header level, and
checking whether it is possible to answer the key questions, leads us to the following thinking
ezercise.

Firstly, the nature of the dynamic process instance, given the underlying relationships, needs
to be clear. Since there is a one-to-one relationship between a PR and a PO, we can leave out
the PR of the discussion. In case a PO header level process instance would be selected (if the
case starts with a PR and/or PO), this could result in traces with multiple invoices (for example
‘Create PR — Create PO — Book Invoice — Book Invoice — Book Invoice’). In case the invoice
has no preceding PR/PO, and the process instance is, as a consequence, the invoice at header
level, there will be mazimum one activity of ‘Book Invoice’ in such a trace, and the different
"Book Invoice’ activities will be captured in separated traces. This difference does not need to
pose a problem, but the event log builders should be aware of these dynamics.

In order to answer the first key question, while starting from a header level of a PO, it is
recommended to retain all activities on goods receipts of all PO lines that are related to that PO
(so no aggregation function). The second question relates to approvals, activities that are linked
to a PO at its highest level. As a result, there is a good match between the selection of a process
instance at header level and this question. The third question also can be answered easily in the
header construct of process instances. It just requires a selection of all traces that start with an
activity like ‘Book Invoice’ to filter out the invoices without a preceding PO. The last question is
comparable to the first one, that also involves a mized level of granularity. If all activities that
capture an addition of a PO line are taken into account in the event log, it will be possible to
answer this question. Beware that if a lower level of granularity was chosen, the issues on lower
level activities that trigger header level activities would become active.

Based on the underlying relationships between PR, PO, and invoice, and based on the formu-
lated key questions, a dynamic process instance at the header level of granularity was selected.
The unique identifiers will be found in the table ‘PR header’, field ‘PR number’, otherwise in
table ‘PO header’, field ‘PO number’, and else in table ‘Invoice header’, field ‘Invoice number’.

Please note that if the key questions were more focused on the alignment of separate PO line
items, the received goods, and the booked invoice lines, it probably would have been recommended
to use a lower level of granularity as process instance. The process analyst should communicate
clearly that, by choosing this high level of granularity, it will be more difficult to gain insights
in separate order lines, their related receipts and booked invoice amounts for example. On the
other hand, aggregated information of these lines can be captured in the attributes (see later).

14

Document number Creator Timestamp Doc type

00001 Chris April 29, 2015 PO
00002 Amber April 29, 2015 PO
00003 Keira April 29, 2015 Framework Agreement

Table 4: Purchase Documents

Step 5: Select activities

After selecting the process instance, the activities can be selected. The following algorithm
should be followed:

1. Initial set of activities = set of cornerstones with their identified timestamps, as
identified in step 2.

2. Verified initial set of activities = initial set of activities, provided that each element
can be related to the selected process instance, or in case of a different level of granularity,
the aggregation function that should be applied is expressed.

3. Set of candidate activities = verified initial set of activities, enhanced with all other
timestamps of the tables, as identified in step 3, along with the activity description these
timestamps capture.

4. Pruning step: starting from the set of candidate activities, discard the activities that
are not of interest to the current process analysis, given the selected goal and scope.

5. Possible additional activities in case of attribute-dependent timestamps: check whether
other attribute values hold interesting activities.

6. Final set of activities = set of candidate activities, minus the activities that are
discarded in the pruning step, plus the additional activities that are selected in the fifth
step.

The fifth step might require some further explanation. The attribute-dependent timestamps
relate to timestamps that capture a specific activity, only if another field (an attribute) holds a
specific value. Take for example Table 4, that holds information on purchase documents. Dur-
ing previous steps, it might have been that the activity ‘Create Purchase Order’ was proposed.
On the question whether there was a timestamp that captured this cornerstone, the IS expert
would probably have answered that the field ‘Timestamp’ in this specific table captures indeed
the activity of creating a purchase order, on condition that the field ‘Doc type’ holds the value
‘PO’. This is an example of what we call ‘an attribute-dependent timestamp’. The fifth step of
the procedure requires a closer look to all other possible values of that ‘attribute’ the timestamp
depends upon to capture a specific activity. In this case, ‘Doc type’ also holds a value ‘Frame-
work Agreement’ and might also hold other values. Consequently, the stakeholders have to
decide whether to include the activity ‘Create Framework Agreement’ in their event log or not.
The underlying assumption of this procedure, is that no value-adding or important activities are
missed if one starts from the cornerstones, as identified by the stakeholders. The stakeholders,
representing both the business and the IT dimension of the process, provide insights from what
they perceive as most important steps in the process. This is enhanced with other timestamps
in related tables, capturing possibly missed key activities. The probability that, by using this
approach, key activities are still missing in the event log, is presumed to be close to zero.

15

The output of this step is a list of tables and timestamp fields, along with the name of
the activity that these timestamps represent. In case of an attribute-dependent timestamp, the
attribute value of interest should be specified. In case of an aggregation function (for example:
only the first activity in its kind per process instance), this should be stated too. If nothing is
stated, no aggregation will be executed in the next phase of event log building.

Running example. Going through the algorithm for our running example, could lead to the
following outputs:

1. Initial set of activities

Table Field Activity
PR header CreationDate Create PR
PO header CreationDate Create PO
Change log header SystemTime Approve PO
PO history Timestamp Enter GR
Invoice header BookingDate Book invoice
Change log line SystemTime Add PO line

2. Verified initial set of activities

Table Field Activity Verification

PR header CreationDate Create PR Link to process instance (PR) = OK

PO header CreationDate Create PO Link to process instance (PR/PO) = OK

Change log header SystemTime Approve PO Link to process instance (PR/PO) = OK
Attribute “action” must equal “approve’

PO history Timestamp Enter GR Link to process instance (PR/PO) = OK

Attribute "document’ must equal *GR’
No aggregation function

Invoice header BookingDate Book invoice Link to process instance (PR/PO/Invoice) = OK

Change log line SystemTime Add PO line Link to process instance (PR/PO) = OK
Attribute “eld” must equal "POLine’
No aggregation function

16

3. Set of candidate activities, including five extra activities (in bold) in comparison to previous

step
Table Field Activity Verification
PR header CreationDate Create PR Link to process instance (PR) = OK
PR header ClearingDate Create PO Link to process instance (PR) = OK
PO header CreationDate Create PO Link to process instance (PR/PO) = OK
PO header ChangeDate Last change PO Link to process instance (PR/PO) = OK
Change log header SystemTime Approve PO Link to process instance (PR/PO) = OK
Attribute “action’ must equal ‘approve’
PO history Timestamp Enter GR Link to process instance (PR/PO) = OK
Attribute ‘document’ must equal ‘GR’
No aggregation function
Invoice header BookingDate Book invoice Link to process instance (PR/PO/Invoice) = OK
Invoice header SystemDate Enter Invoice Link to process instance (PR/PO/Invoice) = OK
Invoice header InvoiceDate Sup[{her Creates Link to process instance (PR/PO/Invoice) = OK
Invoice
Invoice header ClearingDate Pay Invoice Link to process instance (PR/PO/Invoice) = OK
Attribute ‘reference’ must be empty
Change log line SystemTime Add PO line Link to process instance (PR/PO) = OK

Attribute “field” must equal ‘POLine’

No aggregation function

4. Pruning step
The following activities are not withheld:

e (Create PO, retrieved from the timestamp in table ‘PR header’.

e Last change on PO, because it has no added value to the stakeholders.

5. Possible additional activities, stemming from the attribute-dependent timestamps
The field ’SystemTime’ of table ‘Change log header’ is up till now only used to distill
information on approving PO’s. Other values of the attribute ‘action’, that are selected by
the stakeholders are ‘reject’ and ‘forward’. This leads to two extra activities: ‘Reject PO’
and ‘Forward PO’. The same reasoning is applied on the activity ‘Add PO line’, leading
to the incremental activity ‘Increase value PO line’. No further activities of interest were
identified in this step.

6. Final set of activities

17

Table Field Activity Verification
PR header CreationDate Create PR Link to process instance (PR) = OK
PO header CreationDate Create PO Link to process instance (PR/PO) = OK
Change log header SystemTime Approve PO Attribute ‘action’ must equal ‘approve’
Change log header SystemTime Attribute ‘action’ must equal ‘reject’
Change log header SystemTime Attribute ‘action’ must equal “forward’
PO history Timestamp Enter GR Attribute ‘document’ must equal ‘GR’
Invoice header BookingDate Book invoice
Invoice header SystemDate Enter Invoice
Invoice header InvoiceDate Supplier Creates

Invoice
Invoice header ClearingDate Pay Invoice Attribute ‘reference’ must be empty
Change log line SystemT'ime Add PO line Attribute ‘field’ must equal ‘POLine’

Step 6: List attributes

In this step, all the attributes are listed for the data analyst that will build the event log in the
next phase. To list the attributes, one starts from the output list of the previous step, entailing
all tables that are related to the activities. In those tables, characteristics, other than the times-
tamp, are captured. There are two types of attributes: attributes that contain characteristics
of the process instance, and attributes that contain characteristics of the activity on a process
instance. The former attributes are case attributes, the latter event attributes. In general, the
following rule can be applied: attributes that relate to an activity that can only occur once per
process instance (like for instance the creation of the selected process instance), are in se case
attributes. The remainder of attributes are event attributes. Depending on the tooling that is
used, the distinction between case and event attributes can be made. For example, in ProM
Import and XESame (tools to convert data into a minable event log format), case and event at-
tributes are dealt with accordingly. However, some tooling (mostly commercial) expect one flat
file (one large table) as event log. In such format, all attributes are treated as event attributes,
since a record in such a file relates to an event, and not to a case. This format forces the process
analyst to store case information on event level. One could opt to assign the case attributes to
one single activity, but in order for this information to always be captured, the analyst should
make sure this is a mandatory activity (for example an activity like ‘create PO’ when PO is
selected as process instance). If there is no such mandatory event for each process instance, ap-
pearing exactly once per trace, one could create an artificial start event for all cases and relate
all case attributes to this artificial start event. The other option is to assign the case attribute
values to all events. That way, the information is for sure captured in the event log. The down-
side is that the summary statistics always need to be filtered to remove the attribute redundancy.

As a last remark, interesting calculated attributes can be listed too. For example, if the
selected process instance is at parent level, it might be of interest to aggregate some information
that is stored at a lower level. For example, one might desire to include the sum of all invoice
amounts that relate to one PO.

The output of this step is a list of case attributes and a list of event attributes. For each
attribute, a specification of the table and field that stores this information is given. The event
attributes are listed per event type. Optionally, calculated attributes can be listed in a third
list with a clear formula how these attributes should be calculated, on which level the input is
taken, and on which level the calculated attribute needs to be stored.

Running example. For the tables, identified in the previous steps, the following list could be
revealed as selected attributes:
Case attributes

With a dynamic process instance, case attributes are very difficult to select. In this example,
no case attributes are selected, all attributes are assigned to events.

18

Fvent attributes

Activity Event attributes

Create PR creator, type of PR, requestor, requestor department

Create PO creator, supplier, supplier region

Approve PO approvey, function of approver, level of approval

Reject PO rejecter; function of rejecter; number of rejection, reason of rejection
Forward PO resource, department forwarded to, person forwarded to, notes

Enter GR resource, number of units, type of unit, net value

Book invoice resource, type of invoice, net amount, VAT regime

Enter Invoice resource, department, reference number to scan

Supplier Creates Invoice resource, supplier

Pay Invoice resource, bank account, amount

Add PO line resource

Increase value PO line resource, department, absolute value change, relative value change (to calculate)

In a real life example, each identified attribute is accompanied by the field name that captures
the information of that attribute.

Step 7: Consider attributes to incorporate in activities

The last step contains a double-check of the listed attributes, whether there might be some at-
tributes that would add more value if the extra information was incorporated in the activity. For
example, if a certain attribute only has a limited number n of possible values, it might be bene-
ficial to create n variants of that activity, including the information of the attribute. In case the
attribute of interest is an event attribute, only the related event will be multiplied. In case the
attribute of interest is a case attribute, all activities can be multiplied with the possible values of
that attribute, hereby visualizing different paths for different types of cases in one process model.
The main consequence of incorporating information in activities, lies in a different visual level
of granularity of the process. It is important to realise that the analysis opportunities as such
are not impacted by this step. It only results in possible different process maps in the next phase.

Take for example an activity like ‘scan document’ with an attribute that captures the type of
document (invoice versus order). It might be of interest to recplace the activity ‘scan document’
by the activities ‘scan invoice’ and ‘scan proposal’, immediately taking the extra attribute infor-
mation into account. Whether this would be of interest to the analysis, is up to the stakeholders
to decide, taking into account the goal and key questions this would help to answer or not.

Running example. In our example, the shareholders could have selected the activity ‘Book
mwvoice’ to multiply into n different activities, where n stems from the different values of the
attribute ‘type of invoice’. However, it was decided that this was not yielding extra information
in the light of the formulated goal.

19

4 Conclusion

This report presents a procedure to build event logs for process mining purposes in a business
context. Structuring the data that stems from information systems in a suitable event log, re-
quires a thorough understanding of the underlying data structure and the different log structure
options. Along the process of building the architecture of such an event log, different decisions
are taken, which all have their impact on analysis possibilities of the process (the event log) af-
terwards. There are no right or wrong decisions, there are simply consequences that one might
want to realise before the analysis phase.

The presented procedure is a written reflection of the author’s own experience of building
event logs. This experience of building event logs for process mining purposes dates back to
2007 and covers different business and process contexts. The presented procedure is a structured
approach that aims to help process mining novices to consciously build event logs. A carefully
built log assures the process mining project to both manage expectations and deliver what is
expected. It further maximizes the process mining opportunities in the analysis phase.

20

Author

Mieke Jans is assistant professor at the Business Informatics research group
of Hasselt University, Belgium. The topic of her PhD thesis was applying data

mining and process mining for internal fraud risk reduction. For her research,
v‘; she collaborated with a large European financial institution to apply process

mining techniques on the procurement process. Building further on this experi-
ence, her academic research is mostly positioned on the nexus of process mining
and auditing and resulted in international scientific publications (for example
in The Accounting Review and International Journal of Accounting Informa-
tion Systems). After receiving her Phd in 2009, Mieke Jans started working as
a manager (and later as senior manager) at Deloitte Belgium, Enterprise Risk Services. Part of
her responsibilities was to set up a process mining service line, both for financial and internal
audit, and for operation excellence purposes. In September 2014, returned to academia and
took up her present function at Hasselt University. Her research interests are the art of building
event logs and the application of process mining techniques in accounting and auditing contexts.

b4

21

universiter
Campus Hasselt | Martelarenlaan 42 | BE 3500 Hasselt
>> ?l Sse t Campus Diepenbeek | Agoralaan Gebouw D | BE 3590 Diepenbeek

Tel. 011 26 81 00 | www.uhasselt.be
KNOWLEDGE IN ACTION

	PROCEDURE-MIEKE JANS.pdf
	cover.pdf

	achter-cover.pdf

